
https://doi.org/10.1177/2167702617741845

Clinical Psychological Science
﻿1–23
© The Author(s) 2017
Reprints and permissions: 
sagepub.com/journalsPermissions.nav
DOI: 10.1177/2167702617741845
www.psychologicalscience.org/CPS

Empirical Article

Decisions about diagnosis or case formulation are the 
foundation of the rest of clinical activity (Meehl, 1954; 
Straus, Glasziou, Richardson, & Haynes, 2011; Youngstrom, 
2013). If we do not agree in our definition of the prob-
lem, then we are not going to make similar choices 
about how to treat it (Guyatt & Rennie, 2002), and any 
similarities in intervention are coincidental. Because 
of their fundamental importance, diagnostic and clas-
sification systems have been a centerpiece of clinical 
thinking, predating even Aristotle and Galen (Carson, 
1996).

Despite the fundamental importance of classification, 
clinical practice typically relies on imperfect methods. 
The most commonly used assessment method is the 
unstructured clinical interview. It relies heavily on intu-
ition, impressionistic weighting of information, and train-
ing and expertise to guide the synthesis and probing of 

data (Garb, 1998). At its best, it swiftly organizes a wealth 
of multivariate data, recognizes constellations of factors 
and moderators, and rapidly converges on an appropriate 
formulation. More often, it is prone to cognitive heuristics 
that produce biased results (Croskerry, 2003; Jenkins & 
Youngstrom, 2016), underestimating comorbidity and over-
diagnosing some problems while systematically missing 
others ( Jensen & Weisz, 2002; Jensen-Doss, Youngstrom, 
Youngstrom, Feeny, & Findling, 2014; Rettew, Lynch, 
Achenbach, Dumenci, & Ivanova, 2009). Typical clinical 
practice shies away from using semistructured interviews, 
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Abstract
Reliability of clinical diagnoses is often low. There are many algorithms that could improve diagnostic accuracy, 
and statistical learning is becoming popular. Using pediatric bipolar disorder as a clinically challenging example, 
we evaluated a series of increasingly complex models ranging from simple screening to a supervised LASSO (least 
absolute shrinkage and selection operation) regression in a large (N = 550) academic clinic sample. We then externally 
validated models in a community clinic (N = 511) with the same candidate predictors and semistructured interview 
diagnoses, providing high methodological consistency; the clinics also had substantially different demography and 
referral patterns. Models performed well according to internal validation metrics. Complex models degraded rapidly 
when externally validated. Naive Bayesian and logistic models concentrating on predictors identified in prior meta-
analyses tied or bettered LASSO models when externally validated. Implementing these methods would improve 
clinical diagnostic performance. Statistical learning research should continue to invest in high-quality indicators and 
diagnoses to supervise model training.
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based on the belief that they compromise practitioner 
autonomy and risk damaging rapport (Bruchmuller, 
Margraf, Suppiger, & Schneider, 2011), despite quantita-
tive data that patients actually prefer more structured 
methods (Suppiger et al., 2009). Similarly, practitioners 
tend to use few rating scales or checklists, and interpreta-
tion is often limited to eyeballing total scores and intuitive 
impressions even when there is a strong research basis 
for more sophisticated scoring and algorithms (Croskerry, 
2003; Garb, 1998).

At this point, it is unambiguous that even relatively 
simple algorithms equal or better the performance of 
experienced clinicians (Ægisdóttir et al., 2006; Grove, 
Zald, Lebow, Snitz, & Nelson, 2000). But which method 
should the field prioritize in order to ratchet accurate 
assessment another notch forward? There are at least 
four major considerations when comparing methods 
for interpreting the same data: predictive accuracy—
quantified as discrimination and calibration, generaliz-
ability, and level of model complexity (Shariat, 
Karakiewicz, Suardi, & Kattan, 2008). Other factors, 
such as cost and participant burden as well as cultural 
factors, should also inform the construction of an 
assessment battery; here our focus is trying to figure 
out the best way to analyze and interpret the same data.

Some of these considerations are in tension with 
each other. In particular, we can always improve predic-
tive accuracy by making our models more complicated, 
but the tradeoff is that a model that is “overfitted” to 
one sample will replicate poorly in other samples or 
when a clinician applies the model to a new case. The 
core idea has been known for decades, and it is tied 
to the concepts of Type I statistical error (Silverstein, 
1993) as well as more recent discussions of reducing 
bias versus minimizing variability across replications 
( James, Witten, Hastie, & Tibshirani, 2013). The ques-
tion of how to weight scores or items is connected to 
this as well: The accuracy of predictions using weights 
based on one sample will shrink when applied to a 
new set of cases, leading some to advocate simple 
methods such as unit weighting (Wainer, 1976). Assign-
ing all significant variables the same weight will predict 
less well than regression weights fit to the same data, 
but they will shrink less upon cross-validation.

The present article compares a half-dozen different 
approaches for integrating information. There are two 
parts to the article. First, we present an overview of 
progressively more complex solutions to the diagnostic 
classification problem, followed by a series of applica-
tions to two datasets that offer a microcosm of the 
process of generalization moving from research to prac-
tice. We include some simple, classic models that would 
still improve practice if more widely used clinically, 
along with some recent, more sophisticated models 

drawn from the statistical learning model literature and 
now often incorporated into genetic and imaging 
research (e.g., Bertocci et  al., 2014). The statistical 
learning models will use what we will call “internal 
cross-validation,” where the sample will be divided 10 
times, with one portion used to train the model and 
the other folds used to test the model. We also used a 
second independent sample to evaluate reproducibility 
and generalizability, or external cross-validation (Open 
Science Collaboration, 2015). External cross-validation 
is considered best practice when possible, and this also 
will give readers a sense of the difference between the 
two methods—especially because external cross-
validation is rarely done in practice.

We briefly introduce the clinical demonstration prob-
lem, and then we proceed to work through conceptual 
and practical issues in the application of progressively 
more complex models, before proceeding to the statisti-
cal model building and evaluation.

Clinical Demonstration Problem: 
Prediction of Pediatric Bipolar 
Disorder

The detection of pediatric bipolar disorder makes an 
excellent demonstration scenario for comparing diag-
nostic models. The condition can occur in childhood 
or adolescence, as shown by dozens of epidemiological 
and longitudinal clinical studies from sites around the 
world (Van Meter, Moreira, & Youngstrom, 2011). It is 
associated with impairment interpersonally and aca-
demically, along with increased risk of substance mis-
use, incarceration, cardiovascular health problems, and 
suicide (Youngstrom, Birmaher, & Findling, 2008). Yet 
the bulk of the research evidence has accumulated in 
the last 15 years, after the current installed base of 
practitioners completed their training and became 
licensed (Goldstein et  al., 2017). Lacking any strong 
research basis for their assessment training, it is not 
surprising how rife with disagreement clinical opinions 
are about bipolar disorder. Even so, the data are ugly: 
Surveys find 100% ranges of opinion about whether or 
not a given vignette has bipolar ( Jenkins, Youngstrom, 
Washburn, & Youngstrom, 2011), and interrater agree-
ment studies find kappas of 0.1 about bipolar diagnoses 
( Jensen-Doss et al., 2014; Rettew et al., 2009).

The research on assessment of bipolar has advanced 
rapidly; there are now at least three well-validated 
assessments that are public domain and would produce 
substantial gains in diagnostic accuracy (Youngstrom, 
Genzlinger, Egerton, & Van Meter, 2015). A key ques-
tion is how they should be deployed in clinical practice. 
Make the interpretive approach too simple, and it will 
not only sacrifice accuracy but also could have serious 
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unintended consequences, such as overdiagnosis or 
misdiagnosis. Universal screening for mood disorders 
combined with simplistic interpretation could do more 
harm than good (U.S. Preventive Services Task Force, 
2009). Make it too complex, and it will not be feasible 
to use in most clinical settings, and it also may general-
ize less well. Overfitting complex models provides tight 
fit to the idiosyncrasies of a sample, not a general 
method that will be effective across a range of settings 
( James et al., 2013).

Increasingly Complex Approaches to 
Clinical Diagnostic Classification

Bet the base rate

Meehl (1954) suggested that the first piece of informa-
tion to consider is the base rate of the disorder. For 
clinicians, the base rate can anchor decision-making in 
a way that avoids the errors of either never considering 
a diagnostic possibility or overdiagnosing it; but clini-
cians encounter challenges with applying this strategy 
at the level of the individual case. Clinicians might not 
know the base rate at their practice, or the local esti-
mate may be inaccurate, depending on local practices 
(cf. Jensen-Doss, Osterberg, Hickey, & Crossley, 2013; 
Rettew et al., 2009). Published rates offer benchmarks 
that clinicians could substitute for local rates or use to 
evaluate the accuracy of local practices (Youngstrom 
et al., 2017). Also, a base rate is a “one size fits all” first 
approximation, not adjusting probability for any indi-
vidual risk or protective factors. We will illustrate the 
practical implications using the local base rates from 
the two different samples.

Take the best

Gigerenzer and Goldstein (1996) suggested that fast 
and frugal cognitive heuristics can help improve deci-
sion making by using simple strategies and concentrating 
on powerful variables. For example, name recognition 
provides a heuristic for predicting which city has a 
larger population: Berlin or Bremen? Cochin or Calcutta? 
When confronted with a complex clinical case, “take 
the best” could suggest focusing on the single variable 
with the largest validity coefficient and making the 
decision based on it. This could be a symptom (e.g., 
mood swings or elated mood), a risk factor (e.g., family 
history), or a positive score on a test. Consider a case 
with a family history of bipolar disorder, a caregiver 
score of 17 on a valid checklist (e.g., the Parent General 
Behavior Inventory-10 Item Mania scale, PGBI10M; 
Youngstrom, Frazier, Findling, & Calabrese, 2008), and 
a self-reported score of 9 on the same scale, plus prior 

history of anxiety and depression. Which piece of infor-
mation to consider “best” will change depending on the 
criteria. In terms of making a decision about a potential 
youth bipolar diagnosis, family history is probably the 
variable with the largest research base. If a clinician 
picked variables based on familiarity (name recogni-
tion), then family history might be the “best” variable. 
In contrast, using the research and effect sizes to guide 
the choice would lead the clinician to focus on the 
PGBI10M instead: The effect size for it substantially 
outperforms youth self-report (Youngstrom et al., 2015), 
and it is larger than effect sizes for the other variables, 
too.

Most clinicians will use a single threshold or rule of 
thumb to decide whether the score is “high” (a positive 
test result) or “low.” Researchers can estimate the trade-
off between diagnostic sensitivity and specificity in a 
sample. There are different algebraic definitions of the 
“optimal” threshold, depending on whether the goal is 
to maximize accuracy for detecting true cases (sensitiv-
ity), minimizing false alarms (i.e., maximize specificity), 
or maximizing the overall chances of being correct 
(which also needs to consider the base rate of the 
condition; Kraemer, 1992; Swets, Dawes, & Monahan, 
2000). Clinicians usually learn a single published rule 
of thumb and then interpret the scores as either being 
positive or negative.

The probability nomogram (a feasible 
way of applying Bayes theorem)

Bayes theorem is a centuries-old method for revising 
probabilities conditional on new information. In clinical 
decision-making, it provides a method for combining 
the base rate or prior probability with the information 
offered by an assessment finding. Evidence-based medi-
cine (EBM) advocates it as a way of interpreting diag-
nostic tests, coupling information about prior probability 
with the information conveyed by the diagnostic sen-
sitivity and specificity of the result ( Jaeschke, Guyatt, 
& Sackett, 1994; Straus et al., 2011).

Bayes theorem combines a prior probability, such as 
the disorder’s base rate, with new information to revise 
the probability. It has become widely applied to a vari-
ety of prediction and classification problems, including 
forecasting weather, elections, defaulting on loans, 
sporting events, or forensic recidivism (Baumer, Kaplan, 
& Horton, 2017; Silver, 2015; Swets et al., 2000), as well 
as clinical diagnosis. The practical problem that Bayes 
theorem addresses is how to re-estimate the posterior 
probability for a local setting or an individual patient. 
Different variations of the formula accommodate differ-
ent inputs. The posterior probability estimate attached 
to a positive test result is the positive predictive value 
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(PPV), and the posterior probability for a low-risk or 
negative test result is the negative predictive value 
(NPV). These are also estimates of the accuracy of a 
positive or negative assessment finding.

To improve the feasibility for clinicians, EBM recom-
mends the use of a “probability nomogram,” analogous 
to a slide rule that uses geometry to accomplish the 
algebraic transformations (Straus et  al., 2011; do an 
online search for “probability nomogram” to find 
numerous examples and illustrations). The nomogram 
turns applying Bayes theorem into an exercise in con-
necting the dots. It sacrifices some precision compared 
to using an online probability calculator (of which there 
are now several free versions; do an online search for 
“EBM probability calculator”), but it also is visual and 
interactive and may appeal to those who are not “num-
bers people” (Gigerenzer & Muir Gray, 2011). For exam-
ple, family history of a mood disorder increases an 
individual’s risk for developing a mood disorder, and 
higher scores on a symptom checklist often correspond 
to a greater risk for a diagnosis.

To use a nomogram, start with an initial probability 
estimate such as the base rate of the condition, using 
published benchmarks most resembling the setting 
where the clinician is working, or if available, the actual 
local base rate. Next, the diagnostic likelihood ratio 
(DiLR) corresponding to a second source of information 
(e.g., positive family history) is plotted on the nomo-
gram. A line connecting the base rate, or pretest prob-
ability, through the likelihood ratio, extends across a 
third line on the nomogram to estimate the new posttest 
probability (Van Meter et al., 2016). To use a probability 
nomogram, the effect size attached to a particular test 
result needs to be rescaled as a DiLR, which is the frac-
tion of cases that have the diagnosis scoring in that 
range divided by the fraction of cases without the diag-
nosis scoring in that range. In the simple case where 
there is only one threshold, a positive test result has a 
DiLR equal to sensitivity/(false alarm rate). A negative 
test result would have a DiLR of (false negative rate)/
specificity (Pepe, 2003).

Naive Bayesian Algorithms, or 
Using the Nomogram With Multiple 
Assessment Findings

Two more refinements fully articulate the model EBM 
advocates: (a) segmenting tests into more than two 
ranges, milking more informative DiLRs from the seg-
ments, and (b) sequentially adding tests to update prob-
abilities. Segmenting makes intuitive sense: Rather than 
dividing scores on the PGBI10M into two chunks of low 
risk versus high risk, perhaps five chunks—very low, low, 
neutral, high, and very high—might be more informative. 
Each segment would have its own DiLR, which would 

be the fraction of cases with bipolar divided by the frac-
tion without bipolar scoring in the same segment. For 
example, the clinician would give the PGBI10M and then 
pick the DiLR matching the score range and plug that 
into the nomogram. The original PGBI10M validation 
study divided the scores into six segments with DiLRs 
that ranged from 0.01 for the segment defined by a raw 
score of 0 up to a DiLR of 7.25 for extreme high scores 
of 18+ (Youngstrom, Frazier et al., 2008).

If more than one assessment result is available, then 
the clinician could use the updated probability after 
interpreting the PGBI10M as the new “starting” probabil-
ity and then combine it with the DiLR for the next assess-
ment result. In the case of bipolar disorder, family history 
is a well-established risk factor (Tsuchiya, Byrne, & 
Mortensen, 2003) that has been suggested for clinical 
interpretation ( Jenkins, Youngstrom, Youngstrom, Feeny, 
& Findling, 2012; Youngstrom & Duax, 2005). A rule of 
thumb would be that bipolar disorder in a first-degree 
relative would increase the odds of bipolar by 5×. It does 
not matter whether the clinician applies the family his-
tory or the PGBI10M DiLR first. The results would be the 
same in either scenario, and if several DiLRs from differ-
ent tests are available simultaneously, they can be mul-
tiplied to combine them into one summary DiLR.

The sequential application of DiLRs makes the big 
assumption that the predictors are uncorrelated (i.e., 
that there is no association between family bipolar his-
tory and scores on the PGBI10M). This is unlikely to 
be true in practice, which is why the algorithm is also 
known as the “Naive Bayes” algorithm in statistical 
learning circles (Baumer et al., 2017). If the correlation 
among predictors is less than .3, the increases in pre-
dictive consistency and accuracy often offset the bias 
introduced, but when correlations become large (> .5), 
then picking the best and ignoring the others will avoid 
more severe bias (Youngstrom, 2013). The Naive Bayes-
ian approach and sequential application of the nomo-
gram also allow for the clinician to add new information 
in different orders for different patients. Several 
vignettes illustrating sequential application of nomo-
grams in clinical settings are available (e.g., Ong et al., 
2016; Van Meter et al., 2016; see also Wikiversity, n.d.).

Logistic regression

Researchers often combine multiple predictors in a 
regression model. For classification problems, logistic 
regression is a widely used regression approach. 
Logistic regression models the probability of having a 
diagnosis, using a transformation to let probability 
(which is bounded between 0 and 1) be the dependent 
variable in a linear model (Hosmer & Lemeshow, 2013). 
The regression coefficients indicate the change in the 
probability corresponding to a one-unit change in each 
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predictor, with the probability transformed into the log 
of the odds of the diagnosis. A logistic regression with 
a single predictor produces the same probability 
estimates and effect sizes as a receiver operating char-
acteristic (ROC) analysis. When building a model with 
a single predictor, one should again “take the best,” 
picking the variable with the largest effect size to use 
as the predictor.

Logistic regression differs in three important respects 
from the simpler models we have reviewed so far: (a) 
It makes a separate prediction for each one-point 
change in the predictor—for example, in the case of 
the PGBI10M, it would make 31 predictions for a score 
ranging from 0 to 30, instead of just two probability 
estimates for a traditional test positive/negative inter-
pretation; (b) it can adjust for covariates, such as some 
of the demographic and clinical variables that might 
differ between the academic and community clinics; and 
(c) it adjusts for the covariance among predictors, rather 
than making the Naive assumption that family history 
and the PGBI10M score are independent. The weights 
from the regression model could be saved to build a 
prediction equation for out-of-sample cases, providing 
the components for a “probability calculator.”

In principle, there is no reason that the predicted 
probability could not get dropped into the evidence-
based assessment decision-making framework, where 
the clinician and patient compare the updated probabil-
ity to the wait-test and test-treat thresholds and share 
the decision about what clinical action is next. Feasibil-
ity changes when using a logistic regression model: No 
human being can apply the weights in their head. The 
prediction equation requires a computer or app—
raising the base of the natural logarithm to an exponent 
defined by the regression is not a human skill. The 
probability nomogram represents the furthest down a 
clinical interpretive path that we can get without trans-
ferring the flag to a vehicle that requires a computer as 
part of the decision support system. A second consid-
eration is that a regression equation requires complete 
data on all of the variables in the model. Consider a clini-
cian working with a youth in foster care: Family history 
simply may not be available. With the nomogram frame-
work, the clinician could still apply the PGBI10M and 
other assessment findings. A logistic regression equation 
built with family history as one of the predictors is not 
usable when the variable is missing (and the other regres-
sion weights are all organically adjusted based on the 
assumption that family history was also in the model). 
Thus, logistic regression is a familiar technique that rep-
resents a tipping point in clinical application that creates 
new demands for software to implement the scoring and 
decision support. Again, the increases in accuracy could 
be worth the trade.

Logistic Regression With Multiple 
Predictors—Traditional Modeling

A strength of logistic regression is that it can incorpo-
rate multiple predictors, assigning them weights that 
are optimized in the sense of maximizing accuracy in 
the training sample, as well as accommodating the 
covariance among predictors (Hosmer & Lemeshow, 
2013). The weights also have heuristic value for theory 
testing or model building, and traditional approaches 
to regression can use block entry to explicitly describe 
different conceptual roles for variables (e.g., hypoth-
esized risk factor, covariate, or exploratory identifica-
tion of new predictors; Hosmer & Lemeshow, 2013). 
Regression models can include multiple predictors, 
interactions, nonlinear terms—all increasing fit and 
reducing “bias,” but paying a tax in terms of greater 
variance of weights and shifting accuracy across repli-
cations. In the statistical learning literature, this is called 
the bias-variance trade-off: Greater predictive accuracy 
reduces the bias of predictions, but the more complex 
models may overfit the training data and show great 
variance in performance when cross-validated ( James 
et al., 2013). Forward stepwise model selection is an 
old algorithm for maximizing model fit to the data, 
peeking at all the available candidates and choosing 
one based on the observed effect size in the data. It 
overfits the data. If several variables have similar per-
formance, one gets picked as “best,” even if only by a 
whisker. The whiskers are often chance patterns that 
will not replicate in external data. Stepwise is prone to 
Type I error (false positive selection of a variable). 
There also will be a large number of statistical models 
that provide similar fit while using quite different com-
binations of variables and weights—called the “Rashomon 
Problem” in homage to Kurosawa’s film where four 
protagonists offer highly different interpretations of the 
same facts (Breiman, 2001).

In contrast, clinicians could pick the best based on 
published studies, clinical training, or other heuristics 
rather than an exploratory data-mining approach, and 
researchers can prioritize variables based on past find-
ings or theory and push them into the model using 
block entry. In a traditional modeling approach, the 
researcher would identify specific predictors to include, 
such as a valid assessment and family history, and they 
might also include some covariates for demographic or 
clinical features. The optimized weights and adjustment 
for correlation among the predictors mean that logistic 
regression will tie or outperform the nomogram in the 
same sample in terms of both discrimination and cali-
bration. The accuracy of the regression weights will 
shrink on cross-validation in external data, and the 
shrinkage would be larger as models include more 
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predictors, and especially if stepwise methods were 
used. A good model with robust predictors that general-
ize well to external samples should continue to outper-
form Naive Bayesian approaches in terms of accuracy, 
but in terms of feasibility of application, multivariable 
models are clearly far past the tipping point where 
computers would be required.

Controlling for the overlap between predictors also 
is a two-edged sword in clinical application: It produces 
more accurate (less biased) estimates, but it only can 
apply to cases with complete data on the predictor set. 
All of the weights are organically linked and assume 
the presence of the other predictors in the model. Using 
a probability calculator built on a multivariable logistic 
regression effectively dictates the use of a core battery 
to gather all the components of the model, and it will 
break whenever one of the variables is unavailable.

Least Absolute Shrinkage and 
Selection Operation

The least absolute shrinkage and selection operation 
(LASSO; James et al., 2013) is an increasingly popular 
form of statistical learning method that tries to hit the 
sweet spot between fitting well (reducing bias in predic-
tions) and also being likely to generalize (showing low 
variance across replications). It is a form of regression, 
and it can handle multiple predictors (to the extreme 
of having more variables than cases!), interactions, and 
nonlinear transformations. With LASSO, several of the 
normal considerations about logistic regression models 
get relaxed. In a statistical learning framework, there is 
no requirement that there be a strong theoretical justifica-
tion for predictors. It also is easy to include collinear 
predictors, such as full-length and carved scales of the 
PGBI at the same time, as well as interaction terms. 
Because the computer is doing the interpretive hard work 
instead of a human, the complexity of the model is not a 
concern in the same way as in the simpler models above. 
The computer will estimate and compare a staggering set 
of permutations. Unlike some other statistical learning 
models (such as support vector machines and random 
forests), LASSO is not a “black box”—it indicates which 
variables are contributing to the model ( James et  al., 
2013), which is helpful within the context of discovery 
in research and also in informing case formulation.

How does it avoid overfitting, as would be the bane 
of stepwise regression models? Internal cross-validation 
is its answer: LASSO takes the existing data, shuffles 
them, and divides them into a training and a testing 
sample, building the model in the training subset and 
then evaluating its performance in the testing sample. 
It then repeats, resampling k times and looking at the 
stability of the model estimates across the k-fold 

replications (k = 10 resamples is common convention). 
The LASSO algorithm searches for the best fitting model 
in terms of balancing the bias reduction (i.e., accuracy 
of prediction) versus variance (i.e., fluctuation of 
weights across the cross-validations) to select an accu-
rate but stable model.

One final adjustment is that LASSO applies a shrinkage 
function, penalizing all of the regression weights and 
forcing some to zero. Why take optimized weights and 
shrink them? Killing off the weaker weights simplifies 
model interpretation, and it protects against Type I error 
and overfitting when repeated over the cross-validations. 
The penalty function is a form of regularization—sim-
plifying the description of the weights across models and 
cross-validations ( James et al., 2013). The performance 
of the tuning parameter gets averaged over the 10-fold 
internal validations to decide what is the best fitting 
model. In practice, LASSO is often used as a model-
building procedure, and then the “winning” model gets 
repeated in the full sample to provide the final weights 
for clinical application.

To illustrate how LASSO contrasts with other more 
familiar approaches, we will build a model that exam-
ines more variables than would be the norm in research, 
adding highly multicollinear predictors, and also inter-
actions terms. LASSO, like ridge regression, is designed 
to work well in high-collinearity scenarios, and it can 
also consider a set of variables that is larger than the 
number of cases in the dataset ( James et al., 2013).

Some consider it a flaw in studies designed to com-
pare methods when one algorithm has access to addi-
tional variables that the clinician or other algorithms 
did not. It certainly would feel unfair in a traditional 
competition if one contestant had access to a trove of 
information not available to the others. However, pro-
ponents of statistical learning models point to data min-
ing as a natural progression, extracting information 
from variables that might have escaped identification 
based on prior theory or application. The computer’s 
indifference to complexity makes it possible to build 
models that add middleweight variables to explain 
small incremental amounts of variance, cumulatively 
offering big gains in predictive performance (Breiman, 
2001; Walsh, Ribeiro, & Franklin, 2017). It will be crucial 
to see how much incremental value might accrue from 
such “brute force” applications of computing power, as 
well as getting a sense of how much these methods 
might shrink when applied to new out-of-sample cases.

Aims and Hypotheses

Our aim is to compare a series of increasingly complex 
models for the purpose of identifying which youths 
seeking outpatient mental health services might have 
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a bipolar spectrum disorder. We use a consensus diag-
nosis following Diagnostic and Statistical Manual of 
Mental Disorders (4th ed., text rev.; DSM–IV–TR; American 
Psychiatric Association, 2000) criteria as the criterion 
variable. We test a series of models, building up to the 
LASSO model that uses machine-learning methods to 
incorporate far more predictors than traditional meth-
ods. The LASSO method will use 10-fold internal cross-
validation, designed to avoid overfitting and yield 
generalizable estimates.

However, we also have a second dataset for external 
cross-validation, with diagnoses established using simi-
lar methods but with a different referral pattern and 
demography (Youngstrom et al., 2005). We use the sec-
ond sample to evaluate how each model “published” 
based on the academic sample would generalize when 
applied in a different community clinical setting. Unlike 
a traditional “Study 1, Study 2” structure, we zigzag 
between the samples when presenting the results. This 
organization heightens the focus on how external vali-
dation affects each model, illustrating how realistic 
changes in sampling patterns might challenge general-
ization and clinical application. Finally, we flipped the 
order and used the community data to build the model, 
externally validating it on the academic data, as well 
as looking at how a model trained using clinical diag-
noses from the medical record performed. These offer 
strong tests of whether starting with different samples 
would converge on similar models.

We hypothesized that methods that took local base 
rates into account would perform better in terms of 
model calibration. We also expected that the more com-
plex models would fit better in terms of discriminative 
accuracy in the samples where they were built. The 
question of which models fared best during external 
cross-validation was an exploratory aim, because so 
little prior work has directly compared these methods 
in diagnostic assessment. We expected that the more 
complex models would all confirm statistical validity of 
the PGBI10M and family history but would differ in the 
choice of additional predictors.

Method

Participants

Youths 5 to 18 years of age and youth caregivers were 
recruited from outpatient mental health centers. Fami-
lies were recruited from outpatient clinic sites at Case 
Western Reserve University (i.e., academic clinic) and 
Applewood Centers (i.e., community clinics) in Cleve-
land, Ohio. Institutional Review Boards at both institu-
tions approved all study procedures. Both youths and 
caregivers had to be fluent in English. Youths with 
pervasive developmental disorder or cognitive disability 

were excluded. Families received compensation for 
study participation.

The academic clinic sample (N = 550) included fami-
lies presenting to a clinic located within a university 
psychiatry department (Findling et al., 2005). Families 
were referred to the clinic from within the psychiatry 
department or from outside referrals, primarily for con-
cerns regarding youth mood symptoms. However, there 
also were treatment studies for a variety of other diag-
noses, and there were episodes of recruitment for other 
diagnoses. The community clinic sample (N = 511) was 
a random subset of families presenting for services for 
the youth’s youth mental health and/or behavior who 
completed both regular intakes and the enhanced 
research study interview (Youngstrom et al., 2005).

Measures

Bipolar spectrum disorder diagnosis—target vari-
able for classification.  Highly trained research assis-
tants completed the Schedule for Affective Disorders and 
Schizophrenia for School-Age Children–Epidemiologic 
Version (K-SADS-E; Orvaschel, 1994) or the Present and 
Lifetime–Version (K-SADS-PL; Kaufman et al., 1997) with 
the youth and primary caregiver. Interrater reliability 
kappas were ≥ 0.85. Final diagnoses used a consensus 
review process with a licensed psychologist or psychia-
trist (see Findling et al., 2005; Youngstrom et al., 2005, for 
more details). The checklist results were masked from 
the diagnostic process. Present analyses dummy coded 
the presence or absence of any bipolar spectrum disor-
der. This served as the dependent, target variable and 
was a “yes” for any youth meeting DSM-IV criteria for 
Bipolar I, Bipolar II, cyclothymic disorder, or bipolar Not 
Otherwise Specified (NOS), regardless of other comorbid 
conditions. The most common presentation for bipolar 
NOS was insufficient duration of hypomanic or manic 
episode (Youngstrom, 2009). We also extracted the diag-
noses from the medical record for the community cases, 
providing a similar dummy code that captured diagnosis 
as usual. This variable would be what statistical learning 
might use to supervise the training of models built in 
archival data and electronic medical records.

Clinical characteristics of samples
Comorbid or cognate diagnoses.  Diagnoses that involve 

similar clinical presentations are more likely to generate 
false-positive scores on predictor variables. Thus, differences 
in the diagnostic mix of cases could significantly change the 
validity of predictor variables. Therefore, we also created 
dummy codes for the presence or absence of any anxiety 
disorder, attention-deficit/hyperactivity disorder, opposi-
tional defiant disorder, conduct disorder, or posttraumatic 
stress disorder (PTSD), as well as a count of how many 
diagnoses each youth carried (Kim & Miklowitz, 2002).
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Current severity of mood symptoms.  Current mood 
symptom severity also might change the performance of 
predictors. If youths in one sample were more symp-
tomatic, that would increase the apparent sensitivity 
of measures, as more of the target cases would score 
above threshold on a predictor (Pepe, 2003). We used the 
Young Mania Rating Scale (YMRS; Young, Biggs, Ziegler, 
& Meyer, 1978) to compare the manic symptom sever-
ity. The YMRS is an interview rating of the severity of 11 
symptoms of mania. In youths, it is based on interviews 
with both the caregiver and child. Similarly, the Child 
Depression Rating Scale–Revised (CDRS-R; Poznanski, 
Miller, Salguero, & Kelsh, 1984) measured depressive 
symptom severity. Raters completed the YMRS and CDRS-
R during the same interviews as the KSADS, making the 
ratings highly collinear (e.g., AUC > .94 if used in a ROC 
analysis to identify bipolar disorder).

Predictor variables
PGBI.  Caregivers completed the PGBI about the youth. 

The full PGBI has 73 items, with scores ranging from 0 to 
3 (Youngstrom, Findling, Danielson, & Calabrese, 2001). 
It shows exceptional internal consistency estimates and 
high discriminative validity (Youngstrom et  al., 2015). 
The depression scale has 46 items and alphas > .96 in 
both samples. The hypomanic/biphasic scale has 28 
items (one item is included on both scales) and an alpha 
> .92 in both samples.

Because of a high reading level and length, several 
carved shorter forms are available. The 10-item mania 
scale (PGBI10M) focused on the items best discriminat-
ing bipolar from nonbipolar diagnoses using parent 
report (Youngstrom, Frazier et  al., 2008), and it has 
continued to perform in the top tier of available check-
lists in terms of discriminative validity (Youngstrom 
et al., 2015). Another carved scale pulled seven items 
focusing on sleep disturbance, again with good internal 
consistency and identification of cases with mood dis-
order (Meyers & Youngstrom, 2008). A third pair of scales 
is the 7 Up–7 Down, consisting of seven hypomanic/
biphasic and seven depressive items selected for opti-
mal psychometrics in a self-report format (Youngstrom, 
Murray, Johnson, & Findling, 2013). Interestingly, only 
one of the 7 Up items overlaps with the 10 most dis-
criminating caregiver report items, reflecting the differ-
ences in informant perspective about mood symptoms 
(Freeman, Youngstrom, Freeman, Youngstrom, & 
Findling, 2011). The scoring instructions prorate items 
if one is skipped, making fractions of a point possible. 
We used the PGBI10M in all models except the LASSO, 
which considered all of the above.

Family history of bipolar disorder.  Caregivers also 
reported about family history of bipolar disorders (see 
Jenkins et al., 2012, for full description of family history 

assessment). Family history was translated into a yes/no 
variable for presence of any family history of bipolar dis-
orders. The probability nomogram/Naive Bayes models 
used the same weights and DiLRs as used in Jenkins et al. 
(2012), duplicating how a clinician would use published 
estimates in their own clinic.

Demographic variables.  Some models included child 
and parent demographic variables such as child age, sex, 
race, and number of comorbid DSM–IV diagnoses, all 
based on caregiver and child interviews. Family income 
was calculated based on parent report of household 
income and then grouped into ordinal categories.

Procedure

We used the academic sample as the training sample, 
both because it was larger and because that is typically 
how research would flow: Initial work would be done 
in academic settings and later applied in community 
settings. We fit each successively more complex model 
in the academic sample. Table 1 lists the candidate 
predictor values and shows how the models increase 
in complexity. The final LASSO models used 10-fold 
cross-validation for the statistical learning models to 
illustrate how internal cross-validation estimates out-
of-sample performance. Then, we took the coefficients 
based on the academic sample and applied them to the 
community sample, examining external cross-validation. 
External validation is how clinicians need to apply 
research findings in their own practice—taking pub-
lished weights and using them with the assumption that 
performance will not change substantially. Next, compar-
ing these estimates and a third set optimized for the com-
munity sample provides a sense of how much differences 
in demographics or clinical referral patterns may alter 
performance beyond what a machine-learning approach 
might anticipate during internal cross-validation.

As a final test of external validation, we flipped the 
script and used the community sample to build a LASSO 
model and then examined how that model fared when 
externally cross-validated in the academic clinic. Last, we 
ran a LASSO model using the diagnoses from the medical 
record in the community clinic to supervise the model 
training, instead of the research KSADS diagnoses. This 
last scenario is the version where large existing electronic 
medical records are used as the input for machine learn-
ing. If the three approaches to LASSO converge on similar 
models, that would provide reassuring evidence that sta-
tistical methods developed for internal cross-validation 
offer reasonable assurance about external validation.

Listwise deletion removed participants with missing 
values on any predictors used in models, ensuring that 
the same participants were used in successively complex 
models to allow for model comparison both within and 
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between clinic groups. Correlations between a dummy 
code for participants removed from the sample and all 
predictors yielded very small R2s < .001–.05, supporting 
tenability of the missing-at-random assumption.

Results

Preliminary analyses: Mood 
symptom benchmarking and sample 
comparison

Cases with bipolar disorder showed similar manic 
symptom severity across both samples, t(304) = 0.12,  
p = 0.902. Community cases with bipolar had higher 
depression levels, t = 2.83, p < .005, and more comor-
bidity, t = 5.04, p < .0005, indicating a higher rate of 
mixed-mood states and complex presentations. Signifi-
cantly higher rates of anxiety (p < .0005), conduct dis-
order (p < .05), and PTSD (p < .05) contributed to the 
higher comorbidity in the bipolar cases at the commu-
nity clinic. Of the cases with bipolar disorder, 50% had 
bipolar I in the academic clinic, versus 21% in the com-
munity clinic, and 45% of the academic cases had cyclo-
thymic disorder or bipolar NOS, versus 68% of the 
community cases with bipolar. As Table 2 summarizes, the 
overall demography and clinical characteristics of the two 
samples differed significantly and often substantially.

Current practice and the best case 
scenario

The chart diagnoses from the community clinic provide 
a good snapshot of the starting point at many clinics. 
The clinical intake interview was unstructured. The 

agency used general checklists of behavior problems, 
mandated either by Medicaid or by the agency leader-
ship. No checklists with manic symptom content were 
used. The cases included in this article also consented 
to interviews by the research team that also generated 
academic center diagnoses. When comparing billing 
diagnoses to the results of the research KSADS consen-
sus diagnoses, agreement was K = .28, p < .05, when 
using a broad definition of bipolar spectrum (including 
mood disorder NOS). The clinical diagnoses had 31% 
sensitivity and 94% specificity compared to the research 
diagnoses ( Jensen-Doss et al., 2014). The kappa is simi-
lar to that found by Regier et al. (2012) in the field trials 
for the fifth edition of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM–5; American Psychi-
atric Association, 2013) and better than that in a meta-
analysis of agreement between clinical and structured 
diagnostic interviews (Rettew et al., 2009).

At the other extreme, what would be the best case 
scenario for the accuracy of a predictive model? Kraemer 
(1992) showed that if our diagnoses are not perfectly 
accurate, then they will constrain the accuracy of our 
predictive models. Imagine an academic test with errors 
on 5% of the key—a perfectly prepared student would 
score around 95%, instead of 100%. Using K = .85 for 
the KSADS consensus diagnoses imposes a ceiling of 
around AUC ~.925 for predictive models, instead of the 
theoretical ceiling of 1.000 (Kraemer, 1992, pp. 82–91).

Bet the base rate

Academic clinic.  The academic clinic uses semistruc-
tured diagnostic interviews (SDIs) done by highly trained 
and supervised raters. The resulting diagnoses are highly 

Table 1.  Candidate Variables Included in Each Prediction Model

Variable

Take 
the best 
screener

Probability 
nomogram

Multilevel and 
multipredictor 

nomogram

Logistic 
regression 

(1 df  )

Augmented 
logistic 

regression (5 df  )

LASSO (136 
candidate 
variables)

PGBI10M X X X X X X
Family bipolar history X X X
Sex (female) X X
Youth age (years) X X
Race (White yes/no) X X
PGBI–depression X
PGBI–hypo/biphasic X
PGBI–sleep X
PGBI 7 Up X
PGBI 7 Down X
Diagnosis count X
Other diagnosesa X
Two-way interactions X

LASSO = least absolute shrinkage and selection operation; PGBI = Parent General Behavior Inventory; PGBI10M = PGBI 10-item mania scale.
aDummy codes for attention-deficit/hyperactivity disorder, oppositional defiant disorder, conduct disorder, anxiety, and posttraumatic stress 
disorder.
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reliable and valid (reaching the longitudinal expert 
evaluation of all available data, or LEAD, standard; 
Spitzer, 1983). Those psychometric features make it 
attractive to use the academic base rate as a benchmark 
for other clinics. However, referral patterns and inclu-
sion/exclusion criteria may result in idiosyncratic rates 
that differ markedly from community clinics. Table 2 
shows that will be a stern challenge moving from the 
academic to the community clinic. Bipolar spectrum dis-
orders (n = 241 of 550) composed 44% of the sample at 
the academic clinic. Because the clinic specialized in 
mood disorders, the referral pattern was highly enriched, 
and cases without bipolar disorder often were not entered 
into the research database for some projects.

Community clinic.  Performing a chart review of the 
cases seen at the community mental health center found 
that no cases were clinically diagnosed with bipolar I, 
and 9% were diagnosed with bipolar spectrum disorders 

broadly defined (almost entirely NOS). Using the research 
interview process, bipolar spectrum disorders (n = 65 of 
511) accounted for 12.7% of cases in the community clin-
ics. As noted above, the agreement about which cases 
had bipolar was only modest, but the similarity in base 
rate estimates will have good consequences for the cali-
bration of several of the following models.

Based on what is well known about the reliability 
and validity of both SDIs and of unstructured diagnosis 
as usual, it might make sense to switch to the academic 
base rate as a better estimate of bipolar prevalence 
(leaving aside the referral pattern problem for a 
moment). But how would a clinician use that data? 
Randomly applying the academic base rate in the com-
munity clinic would result in an AUC = .500 and K = 0, 
by definition (see Table 3). This is not satisfactory.

Without adding any more assessment data, clinicians 
still could glean some guidance from a study directly 
comparing SDIs and clinical diagnoses. The results 

Table 2.  Demographics and Clinical Characteristics by Clinic Setting

Academic 
clinic (N = 550)

Community 
clinic (N = 511)

Effect 
sizea

Youth demographics  
Male, % (n) 60% (217) 60% (205) .01n.s.

Age, M (SD) 11.40 (3.23) 10.53 (3.41) .26***
White, % (n) 79% (433) 6% (31) .74***
Family incomeb 2.45 (1.21) 1.28 (0.64) 1.20***

Clinical characteristics  
Family history of bipolar 35% (194) 32% (165) .03n.s.

YMRS 11.65 (11.86) 6.05 (8.41) .54***
CDRS-R 35.49 (16.08) 29.95 (13.20) .38***
PGBI10M 10.13 (7.88) 7.47 (6.35) .37***
PGBI–hypo/biphasic 24.66 (16.84) 19.70 (14.22) .32***
PGBI–depression 36.19 (25.67) 24.48 (21.49) .49***
7 Up 5.16 (4.61) 4.11 (3.83) .25***
7 Down 6.24 (5.28) 3.21 (4.04) .64***
PGBI–sleep scale 5.87 (4.74) 4.06 (4.18) .41***

Number Axis I diagnoses 2.15 (1.34) 2.69 (1.38) –.39***
Bipolar spectrum diagnosis 44% (241) 13% (65) .34***

Any attention-deficit/hyperactivity 54% (295) 66% (338) –.13***
Any oppositional defiant disorder 30% (167) 38% (196) –.08**
Any conduct disorder 8% (44) 12% (61) –.07*
Any anxiety disorder 8% (45) 27% (138) –.25***
Any posttraumatic stress disorder 2% (11) 11% (54) –.18***

PGBI = Parent General Behavior Inventory; PGBI10M = PGBI 10-item mania scale; YMRS = Young 
Mania Rating Scale; CDRS-R = Child Depression Rating Scale–Revised.
aphi-squared for categorical variables (sex, race, diagnostic group), and Cohen’s d for continuous 
variables (age, number of diagnoses, rating scales). A positive coefficient means the effect was 
larger in the academic sample, and a negative coefficient means that the effect was larger in 
the community—the academic parameter would underestimate the corresponding value in the 
community. bIncome level of 2 = $20,000–$40,000; Level 3 = $40,000–$60,000. cEqual variances not 
assumed, Levene’s test p < .05.
n.s., not significant. p > .05. *p < .05. **p < .005. ***p < .0005.
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presented in Jensen-Doss et  al. (2014), for example, 
suggest that clinicians underestimate rates of comorbid-
ity, tend to be highly specific but less sensitive to most 
diagnoses, and were particularly conservative about 
diagnosing bipolar. However, the results from an aca-
demic sample, without a direct linkage to clinical diag-
noses, are much less useful than they could be, because 
the sampling differences make differences in base rate 
ambiguous—Are they due to inaccuracy in local diag-
noses, or varying referral patterns, or a combination of 
factors?

Take the best

A next step would be to add a checklist to screen or 
assess for potential bipolar disorder. A recent meta-
analysis comparing all published pediatric mania scales 
found three performing in the top tier (Youngstrom 
et al., 2015). Clinicians will not want to add redundant 
tests, and practical considerations push towards using 
short and free scales. The PGBI10M satisfies all of these 
criteria.

Academic clinic.  A traditional way of interpreting a test 
is to pick a data-driven threshold and treat all cases scor-
ing at or above the threshold as having a “positive” test 
result. ROC analysis identified a cutoff score of 6.25 as 
producing the highest combination of sensitivity (92%) 
and specificity (64%) in the academic sample; 67% of 
cases testing positive (scoring at 6.25 or above) had a 
bipolar diagnosis (the PPV). Of cases scoring below the 
threshold, 91% did not have bipolar disorder (the NPV). 
Figure 1 shows a back-to-back histogram with the PGBI10M 
score distributions for both bipolar and nonbipolar cases, 

and Table 3 reports the AUC as an effect size for the accu-
racy of the PGBI10M. Of note, the act of splitting the scores 
into “test positive” and “test negative” defines an ROC curve 
with an AUC of .781; this is lower than for the full PGBI10M 
AUC of .857 because a threshold model is using less infor-
mation about the score.

Community clinic.  A diligent clinician could read the 
meta-analysis, pick the PGBI10M, get a free copy of the 
measure and scoring instructions (Wikipedia, n.d.), and 
use the threshold of 6.25 based on the “published” aca-
demic sample result. In theory, the diagnostic sensitivity 
and specificity of the test should be stable, and they are 
algebraically unconnected to the base rate of the disorder 
in the sample. In practice, test sensitivity can change as a 
function of factors that affect illness severity or the range 
of presentations (Zhou, Obuchowski, & McClish, 2002). 
Looking back at the histograms (Fig. 1), anything that 
shifts the distribution of scores for the bipolar group 
higher will move a larger percentage of the cases above 
any given threshold, increasing the sensitivity, and factors 
affecting the spread of scores also could change perfor-
mance. Conversely, factors shifting the score distribution 
for nonbipolar cases will change the specificity. Meta-
analyses (Youngstrom et  al., 2015) and direct compari-
sons (Youngstrom, Meyers, Youngstrom, Calabrese, & 
Findling, 2006) have shown that using healthy controls 
increases the apparent specificity of tests, and building a 
comparison group with cases seeking services and with 
higher levels of impairment or higher rates of cognate 
diagnoses reduces the specificity estimate. Because the 
academic sample used clinical cases as the comparison, 
and both are outpatient settings, we did not expect big 
changes in the specificity; but if the community clinic has 

Table 3.  Accuracy Statistics for Discrimination (AUC) and Calibration (Spiegelhalter’s z) for Internal Validation 
and Cross-Validation in an Academic Sample and External Cross-Validation in the Community Sample

Academic sample (N = 550)

External cross-validation: 
Academic weights in 

community sample (N = 511)

Model AUC Spiegelhalter’s z AUC Spiegelhalter’s z

Bet the base rate .500 (.025) 0.01n.s. .500 (.038) –14.16****
Take the best (dichotomize PGBI10M) .781 (.020) –0.01n.s. .729 (.029) 5.27****
Nomogram .781 (.020) .729 (.029) 0.01n.s.

Multilevel and two-variable nomogram .882 (.014) 0.19n.s. .775 (.025) 2.09*
Logistic regression (1 df) .857 (.016) 0.13n.s. .799 (.024) 0.04n.s., b

Logistic regression (5 df) .890 (.014) –0.06n.s. .775 (.026) 4.47****
LASSO (136 candidates) .902 (.013) –3.72*** .801 (.024) 0.32n.s., b

Reversed LASSO (community weights) .864 (.015) 20.55**** .830 (.023) –0.62n.s.

Diagnosis upper limit .925a — .925a —

aThe KSADS diagnosis kappa of .85 imposes an upper bound on the AUC (Kraemer, 1992).
bThe calibration plot (Fig. 2) and Hosmer–Lemeshow test both indicated marked calibration problems, X2 (10 df) > 200.00,  
p < .00005. In other models, the Spiegelhalter z and other calibration diagnostics agreed.
n.s., not significant. p > .05. *p < .05. **p < .005. ***p < .0005. ****p < .00005.
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fewer cases with mania, or less severe manic presenta-
tions on average, then we would expect the sensitivity to 
drop.

Clinicians will not usually have access to SDIs or to 
other ways of checking their accuracy. Meehl (1973) 
identified the lack of corrective feedback as one of the 
main reasons years of experience tend to improve clini-
cal acumen little, if at all. In practice, clinicians will not 
be able to re-estimate the accuracy of a test in their 
setting; they need to trust the generalizability of the 
researcher’s estimate. Using the threshold of 6.25 from 
the academic sample identifies 43% of the cases as 
“testing positive” for bipolar disorder and, conversely, 
57% of the cases as testing negative. How should a 
clinician interpret these results?

Comparison to external benchmarks or local esti-
mates about the base rate of bipolar disorder both 
indicate that the test positive rate is too high, containing 
a large number of false-positives. The clinician has a 
sensitivity estimate from the academic sample (92%) 
but that is not the same thing as how accurate a posi-
tive test result would be (i.e., sensitivity and PPV are 
not the same thing). The “published” academic PPV 
(67%) suggests that two out of three of the cases scor-
ing above threshold actually have bipolar disorder. 
However, the academic clinic had a much higher base 

rate of bipolar. Both PPV and NPV are algebraically 
linked to the base rate of the sample, meaning that 
estimates cannot generalize to settings with different 
base rates. EBM suggests a mnemonic to help clini-
cians interpret positive and negative results: SnNOut 
and SpPIn (Straus et al., 2011). On a Sensitive test, a 
Negative result rules the diagnosis Out (SnNOut). 
Conversely, on a Specific test, a Positive result rules 
the diagnosis In (SpPIn). Here, the published sensi-
tivity is good, whereas the specificity is mediocre. 
Counterintuitively, a negative result (scoring 6 or 
lower) would be more decisive than a positive result: 
According to this mnemonic, it would meet the 
SnNOut criteria.

If the clinician had diagnostic X-ray vision, or a 
researcher could re-evaluate a representative set of 
cases to re-estimate the accuracy, the PGBI10M general-
ized fairly well, with good sensitivity (.87) and adequate 
specificity (.52). However, the accuracy of positive test 
results would be poor, PPV = .25. On the other hand, 
the NPV would be excellent: .97. This is what the 
SnNOut rule of thumb approximates. SnNOut does not 
quantify the accuracy, but it reminds the clinician that 
the negative result is the decisive one (especially com-
bined with a low base rate), whereas positive results 
need further evaluation.

Fig. 1.  Back-to-back histograms of the distribution of scores on the Parent General Behavior Inventory 10-item mania scale (PGBI10M) 
for youths with and without a diagnosis of bipolar disorder (BP) in both academic (N = 550) and community (N = 511) clinic settings. 
AUC = area under the curve. 
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The probability nomogram or Naive 
Bayesian Model

Academic clinic.  The academic clinic can directly esti-
mate its base rate, because the research protocol gathered 
SDIs for all cases. Using a nomogram to estimate the pre-
dictive values would duplicate the PPV, because the com-
bination of the prior probability (44%) and the DiLR 
attached to a high PGBI10M score [.92 sensitivity/(1 – .64 
specificity) = 2.56] would produce the same estimate (91% 
probability of having bipolar). Using the nomogram with 
a low score would produce an estimate of a 9% chance of 
having bipolar disorder (44% base rate combined with a 
DiLR of 0.125), which is the converse of an NPV of .91 
(i.e., a 91% chance that a person with a low score does not 
have bipolar, versus a 9% chance that the PGBI10M score 
was wrong, and he or she does have bipolar).

Community clinic.  A clinician working in the commu-
nity might be able to estimate a local base rate, either by 
querying the local medical records or by selecting a rea-
sonable benchmark from published rates in similar set-
tings. Using the 9% rate from local billing diagnoses 
combined with the published DiLRs yields a PPV of 20% 
for a high score and a bipolar probability of 1.2% for a 
low score (corresponding to an NPV of 98.8%).

All of the numbers used above are suboptimal for the 
local sample. The billing diagnoses were based on 
unstructured interviews by clinicians working under 
time pressure and pragmatically constrained to select 
diagnoses that would be reimbursable by Medicaid. The 
broad bipolar definition using the chart diagnoses hap-
pens to yield an estimate similar to the number based on 
research interviews of the families participating in the 
grant, but the agreement about which 9% to 13% of cases 
had bipolar disorder was only moderately better than 
chance. The DiLRs from the academic sample also might 
not be accurate, nor based on the optimal threshold, for 
the community clinic, given differences in severity of 
bipolar presentation, case mix, or demographic features.

Multilevel DiLRs and multiple 
assessments

Academic clinic.  Using the six-level DiLRs published for 
the PGBI10M, combined with a 5× increase in the odds of 
bipolar if the patient has a first-degree relative with bipolar 
disorder defines 12 different predictions. Starting with a 
base rate of 44%, the lowest risk combination (PGBI10M 
score of 0 and no family history) gets updated to a prob-
ability of 0.8%, and the highest risk combination moves to 
96.6%. The reader can confirm these estimates by using a 
nomogram, connecting the .44 to the DiLR of 5 for family 
history and then iterating with the 7.25 (or multiplying 5 × 
7.25 = 36.25 for the combined high-risk DiLR).

Community clinic.  Using the same published DiLRs 
but combining with the lower base rate at the community 
clinic results in a spread of revised probabilities ranging 
from 0.1% for the lowest risk segment to 84.1% for the 
highest risk combination using the 12.7% base rate (or 
78.1% using the billing estimate of 9% prevalence).

Logistic regression—single and 
multiple predictors, traditional model 
building

Academic clinic.  To show the potential advantages of 
logistic regression, we use the PGBI10M as a predictor by 
itself (to illustrate the more fine-grained prediction) and 
then build a second model combining it with family his-
tory, while also adjusting for age, race, and sex. The 
PGBI10M predicted bipolar diagnosis, B = .21, p < .0005, 
and Nagelkerke R2 = .46. Adding the family history and 
youth sex, race, and age to the model further improved 
model fit, p < .0005, with the R2 rising to .55. Family his-
tory and PGBI10M made significant incremental contri-
butions to the model, both p < .0005; the demographic 
variables were not significant. Of note, the PGBI10M and 
family history correlated r = .26, p < .0005, consistent 
with concerns about the Naive Bayesian assumption of 
independence. Predicted probabilities ranged from 8.0% 
to 98.2% using the PGBI10M alone and 2.7% to 99.5% for 
the five-predictor model; the average predicted probabil-
ities were 43.8% (the base rate in the academic sample).

Community clinic.  If an enterprising researcher started a 
small business and made a smartphone application to 
apply the logistic regression results (or if an industrious 
clinician made a scoring spreadsheet), then it would be 
possible to take a patient’s score on the PGBI10M and esti-
mate his or her probability of a bipolar diagnosis using the 
published weights. Applying the academic sample weights 
to the community cases yields probability estimates span-
ning from 8.0% to 95.8%, with an average predicted prob-
ability of 33.6%. Using the out-of-sample weights is exactly 
what we do any time we use scoring software or norms. 
However, the typical research study does not have a rigor-
ously defined representative sample, and so it is a larger 
leap to apply the weights in a new setting.

If the clinicians could re-evaluate the same predic-
tors in the community mental health sample compared 
to an SDI criterion diagnosis, they would get different 
weights for every variable. For the simple model with 
the PGIB10M as the lone predictor, the R2 is .21, and 
for the five-predictor model, the R2 is only .22—less 
than half of the variance explained compared to the 
academic sample. Attempting to covary for the clinical 
or demographic variables that differed between the 
samples did not improve the fit in the community sam-
ple. The researcher would be mistaken to assume that 
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including the covariates in the regression model pro-
tected against problems in generalizability.

Using the local, optimized weights (which would nor-
mally not be available to a clinician) produces predicted 
probabilities ranging from 3.0% to 65.5% for the 
PGBI10M as a single predictor, and 2.4% to 67.5% for 
the five-predictor model, both with average probabilities 
of 12.7% (anchored to the sample’s actual base rate). 
The correlation between the software’s prediction and 
the locally optimized regression was r = .85, p < .0005, 
but there is a significant difference in the average prob-
ability, p < .005. This is a problem in model calibration. 
More on this below.

LASSO—a statistical learning model

Academic clinic.  Table 1 summarizes the variables 
considered in the LASSO regression. We limited our-
selves to two-way interactions, resulting in a matrix of 
136 candidate predictors in a training sample of 550 
cases. In principle, we could have made the analytic 
space even more complicated, going with higher order 
interactions, nonlinear transformations, and an even 
more extensive list of covariates. This is enough to give 
the flavor. Using 10-fold internal cross-validation and the 
tuning lambda within 1 standard error of the minimum 
(1se) rule to select the final model (James et al., 2013) 
resulted in a prediction equation that retained six predic-
tors (see Table S1 in the Supplemental Material available 
online; versus a 28-predictor model using the model with 
the minimum lambda). Using these in the full academic 
sample produced probability estimates ranging from 
6.9% to 98.0% for individual cases, with an M of 43.8% 
(the observed base rate). The AUC for these predictions 
was .902 (95% confidence interval [CI] = [.88, .93]), reach-
ing the upper bound of .925 imposed by the accuracy of 
the criterion diagnosis and base rate (Kraemer, 1992). 
The more augmented model selected by the minimum 
lambda criterion had an AUC of .926—right at the upper 
bound, and also suggestive of overfitting.

Community clinic.  Using the six-predictor model built 
by LASSO with the regression weights from the academic 
sample produces probability estimates ranging from 6.9% 
to 97.3% for individual cases in the community clinic, 
with M = 36.6%. The AUC for the predictions compared 
to the SDI diagnoses (normally not available to the clini-
cian) drops to .801 (95% CI = [.75, .85]). This is signifi-
cantly lower than in the academic sample, p < 2E–16 based 
on a Hanley and McNeil test, and the confidence interval 
is double what the internal validation in the academic 
data suggested. More alarmingly, the accuracy is also 
lower than the simpler models using the nomogram and 
two predictors (PGBI10M and family history) or even the 
PGBI10M alone in a regression.

Looking at the list of six predictors from the aca-
demic sample, only three are main effects (and the situ-
ation gets more extreme with the 28-predictor model: 
26 are interactions). LASSO does not follow the conven-
tion of retaining all the main effects that build the 
interaction terms. In a purely predictive application, 
this may be fine (Breiman, 2001), but it is highly prob-
lematic from a model-building perspective (Cox, 2001), 
and the weights are hard to interpret from a theory-
building perspective. This undermines one of the 
advantages of LASSO compared to “black box” machine-
learning methods.

Flipping the script: What if LASSO had trained in 
the community setting?.  As an additional way of evalu-
ating external cross-validation, we reversed the sequence 
we have been using so far and used LASSO to evaluate 
the same 136 candidate variables in the community data, 
again with 10-fold internal cross-validation and identical 
model selection procedures. This produced a model with 
an AUC of .830 (95% CI = [.79, .87]), indicating that the 
community data are harder to fit well than the academic 
sample (with a corresponding AUC of .902). Table 3 
shows that, once again, the LASSO-generated model pro-
duces the best discrimination accuracy of any model in 
the data used to build it. But the community LASSO model 
keeps only one predictor (an interaction not included in 
the model built in the academic sample) instead of six. 
Using the minimum lambda algorithm does not improve 
consistency: That indicates 9 variables versus 28 in the 
academic version, and only 3 are the same in both mod-
els. If the researcher had started in the community, built a 
prediction model based on those data, and then applied 
those weights in the academic clinic, the AUC would be 
.864 (95% CI = [.83, .89])—again, similar or significantly 
lower than using simpler models (see Table 3; the 5 df 
logistic regression performed significantly better, p = .03). 
The LASSO model built in the community sample omits 
family history of bipolar disorder as a predictor, as well as 
any main effect for a PGBI scale, raising questions about 
the value of the statistical learning method from a variable 
discovery perspective, too. Simpler models that included 
these main effects performed better in terms of accuracy, 
whereas the LASSO method obscured their role by replac-
ing them with a set of interaction terms.

Calibration

Another important accuracy metric is calibration, 
defined as the degree to which predicted probabilities 
match the actual “true” probabilities (e.g., Jiang, Osl, 
Kim, & Ohno-Machado, 2012; Spiegelhalter, 1986). For 
dichotomous outcomes (e.g., bipolar diagnosis), this 
“true” probability can be operationalized as the propor-
tion of observed outcomes for a group of cases. For all 
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predictions of .30, a bipolar diagnosis should be con-
firmed 30% of the time. Calibration can be evaluated 
visually via calibration plots and using inferential statis-
tics such as Spiegelhalter’s (1986) z statistic. Calibration 
is a particularly important metric of accuracy for risk 
calculators (e.g., Hafeman et  al., 2017) and other 
decision-support tools used in clinical settings.

The models were generally well calibrated for the 
“original” (i.e., model-building) datasets (i.e., academic 
weights in the academic sample, community weights in 
the community sample), sometimes referred to as 
“apparent calibration.” Calibration plots for these mod-
els looked reasonable, with all data points falling on 
or close to the diagonal line (see Fig. 2) and mostly 
nonsignificant Spiegelhalter’s z statistics (see Table 3).

External cross-validation was a different story. When 
the academic weights were used to predict bipolar dis-
order in the community sample, most models were 
poorly calibrated. The calibration plots show that the 
models generally overpredicted bipolar for predicted 
values above .20 (see Fig. 2). In an EBM framework, 
this would increase the number of cases in the assess-
ment zone (yellow zone), leading to unnecessary 
follow-up evaluation but not necessarily to overly 
aggressive treatment (Youngstrom et  al., 2017); the 
more complicated regression and the LASSO using aca-
demic weights could lead to overtreatment in the com-
munity sample as well. All models had either a 
significant Hosmer–Lemeshow χ2 or Spiegelhalter’s z 
statistic (p < .05, see Table 3), except for the nomogram 
model that applied local base rate.

Coda: What if we used clinical 
diagnoses to supervise LASSO 
training?

A final model used the diagnoses from the medical 
record at the community clinic to supervise a LASSO 
model. The same 136 candidate variables got considered 
in the N = 511 community cases, using the same 10-fold 
internal cross-validation and model tuning parameters. 
The 1se algorithm excluded all predictors, keeping only 
the intercept (collapsing to “bet the base rate”), and the 
minimum lambda algorithm model kept three predic-
tors, none of which overlapped with either of the previ-
ous LASSO models. All were interactions; none were 
main effects. Using the clinical diagnoses to supervise 
the machine learning failed to recover any of the PGBI 
variables or family bipolar history as predictors, despite 
their extensive support in meta-analyses (Hodgins, 
Faucher, Zarac, & Ellenbogen, 2002; Youngstrom et al., 
2015). However, the PGBI10M by itself would have been 
a valid predictor of the chart diagnoses, AUC = .675,  
p < .0005. Family bipolar history did not discriminate 
among chart diagnoses, AUC = .569, p = .147.

Discussion

The goal of this article was to compare a series of pro-
gressively more complicated approaches to evidence-
based assessment and clinical decision-making. The 
first part of the article discussed both theoretical and 
pragmatic considerations, and the second part con-
trasted the empirical performance of the models. We 
used a vexing clinical challenge for the empirical case 
study: the accurate identification of pediatric bipolar 
disorder. We began with simple and familiar models, 
such as giving one of the best available screening tests, 
and then worked through newer and less widely imple-
mented methods, such as using multilevel likelihood 
ratios and a probability nomogram to apply a Naive 
Bayesian algorithm, as recommended in EBM (Straus 
et al., 2011) and evidence-based assessment (Youngstrom 
et al., 2017). We contrasted these with logistic regres-
sion models using the screening test as a single predic-
tor and then with a five-predictor model that combined 
two well-established predictors (the psychometric scale 
and family history of bipolar disorder) with three 
demographic covariates that vary to different extents 
across clinical settings. Finally, we used a statistical 
learning procedure, LASSO, to consider 136 candidate 
variables—including everything in the prior logistic 
regression, plus additional information about comor-
bidity, plus alternate ways of slicing the scores from 
the symptom questionnaire, plus second-order interac-
tions among all of the above. We followed recom-
mended practices, using 10-fold cross-validation to 
select the optimal model in terms of the bias-variance 
trade-off. We evaluated model accuracy in terms of 
AUC from ROC analyses and also calibration of the 
probabilities (Spiegelhalter’s z). As hypothesized, the 
more complex models showed better discriminative 
accuracy.

Perhaps most importantly, though, we had a second 
independent sample with the same inputs and the same 
criterion diagnoses available but with markedly different 
demography and referral patterns. This provided an 
opportunity to examine external cross-validation, versus 
the more common practice of estimating generalizability 
using internal cross-validation methods. We used the 
data from the academic medical center as the first run 
and then evaluated the performance of the same model 
and “published” weights if applied in an urban com-
munity mental health center. This flow mimics the way 
that scientific research is supposed to propagate into 
clinical practice: A research team gathers a sample, 
evaluates models, and publishes recommendations 
(including cut scores, diagnostic accuracy estimates, or 
regression weights) that others are then supposed to 
apply in their clinics to new patients who were not in 
the original published sample. Unlike practicing clini-
cians, we were also able to re-evaluate the same 
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variables using the same statistical methods. Clinicians 
are not in a position to run LASSO regression on all their 
cases—at least not yet—even if the same data inputs 
were available. We framed this as the clinician having 
“research X-ray vision” as a way of reminding readers 

that this information is not usually available to clinicians, 
nor would it be available to end-users of statistical-
learning algorithms unless the designers took extra steps 
to gather the criterion diagnosis using a research inter-
view and then to re-evaluate the algorithm.

Fig. 2.  Calibration plots. Perfect calibration is represented by the diagonal line. The vertical lines represent the wait-test decision threshold 
(solid green) and test-treat threshold (dashed red) in an evidence-based-assessment approach to clinical decision-making. The values of 20% 
and 80% were chosen as an approximation for heuristic purposes, not as a set threshold. Predicted probabilities below 20% would result in 
a clinician ruling out the diagnosis, “waiting” until other findings raised the probability again. Probabilities between 20% and 80% would be 
in the “assessment zone,” suggesting more intensive evaluation, and probabilities above 80% would be in the “treatment zone.” Most models 
overestimate the probability of bipolar disorder in external validation. 
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As the effect sizes comparing the samples show, the 
academic and community samples differed significantly 
on most variables considered, with the effect sizes span-
ning from small to very large. The performance of the 
prediction models was always worse in the community 
sample. Some degree of shrinkage is expected whenever 
there is out-of-sample cross-validation. We refit several 
of the models in the community data to provide a best 
case scenario for how the same model would have fared 
if the weights had been optimized to the community 
setting, and these were consistently less accurate than 
their counterparts built in the academic setting. The 
community data are fundamentally more challenging, 
probably due in part to the type of bipolar presentation 
seen there (with higher rates of mixed mood and higher 
comorbidity with anxiety, conduct, and PTSD). What is 
striking, though, is that the LASSO model showed by far 
the largest shrinkage, dropping from an AUC of .93 in 
the academic setting to .80 in the community—this 
despite following best practices for model cross-
validation within the academic sample. In contrast, sim-
pler models showed much less shrinkage.

Perhaps most concerning is the performance of 
LASSO from a variable discovery perspective. Given 136 
candidate predictors, LASSO built a model with three 
main effects and three interactions in the academic 
sample and one interaction in the community data. 
None of the chosen variables were the same. LASSO 
failed to identify two of the most well-established pre-
dictors, family history of bipolar disorder or the PGBI, 
when built in the community data, despite them con-
tributing to predictions in simpler models. This is the 
Rashomon problem: The model selected interaction 
terms and predictors with slight advantages in the cur-
rent sample, with no recourse to the literature, theory, 
or established model-building heuristics (e.g., include 
main effects when examining interactions to improve 
interpretability) to increase the consistency across exter-
nal validations. Most disappointing of all was the per-
formance of a model built using the clinical diagnoses 
from the medical records to supervise the LASSO model 
training. The parsimonious version of the model 
excluded all predictors (turning into a “bet the base rate” 
model), and the more elaborate version still produced 
poor accuracy, did not identify any of the same predic-
tors as the other two LASSO models, and failed to 
recover either of the well-established predictors included 
in the candidate list—family bipolar history (Smoller & 
Finn, 2003) and the PGBI (Youngstrom et al., 2015).

We examined a second aspect of accuracy, the cali-
bration of the predictions based on each model. In 
general, calibration was good during the internal valida-
tion scenarios and problematic across all external vali-
dation scenarios unless the algorithm incorporated 
accurate information about the local base rate. Poor 

calibration has important consequences in clinical deci-
sion making. When the models were miscalibrated, the 
probability estimates were too high in the community 
setting (see Fig. 2). EBM talks about two decision 
thresholds for clinicians—whether to consider a diag-
nosis low enough probability that it is ruled out (“green 
zone”) versus intermediate probability, requiring further 
assessment (yellow zone), and the assess versus treat 
threshold, past which the probability is high enough 
that the diagnosis is functionally confirmed and 
becomes a focus of intervention (red zone; see 
Youngstrom, 2013, for further elaboration). In this 
framework, the nomogram approach combined with 
local base rates would functionally rule out a bipolar 
disorder, putting the probability in the green zone, and 
high scores would move the probability into the yellow 
zone, warranting further assessment. Poorly calibrated 
models put too many cases into the assessment zone, 
leading to increased follow-up evaluation that would 
increase fiscal costs (Kraemer, 1992). The more com-
plicated models, including logistic regression with five 
predictors and any version of LASSO, were the ones 
with calibration problems that misclassified cases into 
the treatment zone. Based on present findings, using 
the LASSO models would lead to overdiagnosis and 
overtreatment of bipolar disorder; the nomogram 
approach recommended by EBM would not.

Model complexity improves accuracy, 
to a point

Diagnosing bipolar disorder is challenging, and reviews 
of interrater agreement are sobering (e.g., Rettew et al., 
2009). Using any of these methods could improve diag-
nostic accuracy for pediatric bipolar disorder. In terms 
of balancing feasibility, accuracy, and calibration, the 
Naive Bayes approach and the probability nomogram 
perform well—the accuracy remained good upon exter-
nal cross-validation, and the calibration was good if 
there was reasonable information about the base rate. 
Given the high stakes associated with the diagnosis and 
the low rate of accuracy of current practices, it would 
be valuable to implement some of these methods. 
Because they were well calibrated if given reasonable 
base rate estimates, using these methods will not lead 
to overdiagnosis of bipolar and will improve decision-
making about when bipolar can be considered “ruled 
out” versus when to follow up with more systematic 
(and ideally structured) interviewing (Youngstrom 
et al., 2017).

The traditional logistic regression and LASSO models 
clearly would require software to score them and provide 
the probability to the clinician. Both tended to be poorly 
calibrated (although the tuning algorithm selecting sim-
pler models tended to show milder calibration issues), 
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and using weights from the academic sample in the com-
munity would lead to overdiagnosis despite good dis-
crimination. Further, the apparent improvements in 
discrimination disappeared for LASSO in the external 
cross-validation scenarios compared to simpler models.

Model complexity creates barriers  
to implementation

Model complexity and lack of familiarity create barriers 
to implementation. How much can we change assess-
ment practices without losing the clinician? Jaeschke 
et  al. (1994) published the nomogram approach in 
JAMA in 1994. Subsequent books about EBM have con-
sistently included it as a core method for medical diag-
nosis, but it is still unfamiliar to most psychologists. It 
being a visual, not an algebraic, approach could make 
it more appealing to people who go into health care 
professions, as they tend to be “people people,” rather 
than “numbers people” (Gigerenzer, 2002). Logistic 
regression and anything more complicated will require 
a computer program to score and provide the feedback 
(Lindhiem, Yu, Grasso, Kolko, & Youngstrom, 2015). 
IBM’s Watson is doing the computations and using 
probability dashboards as a way of providing decision 
support for the clinician. Even as these computer-
assisted algorithms become more available, the nomo-
gram will probably remain a good teaching tool, as well 
as being a robust interim option when the software is 
not available.

How robust will the more complicated 
algorithms be?

Initially, not very. When we flipped the script and used 
the community clinic to build the LASSO model, only 
three of the two dozen variables LASSO identified as 
important in the academic sample were picked for the 
model. It is worth noting that while the demography 
and referral patterns for the two settings were quite 
different, both were located in the same city, and both 
used the same criterion diagnostic methods (e.g., 
KSADS interviews conducted by the same research 
team). In those respects, the external cross-validation 
may further degrade if the model were applied in a 
different part of the county (e.g., consider Texas, with 
very different demography and language issues). As the 
contrast in performance between the academic and 
community samples vividly illustrates, sampling mat-
ters. It affects the generalization of models and algo-
rithms across clinical settings. Settings may differ in 
ways both known and unknown. The first pass of sta-
tistical learning models is being applied to convenience 
samples and convenient sets of variables (Campbell & 
Stanley, 1963). These will not generalize well. Sample 

folding cross-validation, because it is taking the aca-
demic sample and using it to train and to test the model, 
cannot accurately forecast the size of the challenge 
when applied in a different setting, nor what the key 
moderators of performance will be.

The choice of criterion diagnosis is going to be espe-
cially challenging for machine-learning applications. 
Where the models have been applied with success, they 
are working with a much more objective criterion, such 
as defaulting on debt or predicting a purchase (Breiman, 
2001). Even in these more concrete applications, the 
models change over time and require recalibration 
(Hoadley, 2001; Konig, Malley, Weimar, Diener, & 
Ziegler, 2007). Mental health diagnoses are a different 
order of complexity (Cronbach & Meehl, 1955; Meehl, 
1954, 1973). Using clinical diagnoses to supervise sta-
tistical learning will encounter snares with local varia-
tion in training and practice. The Dartmouth Atlas of 
Health Care project consistently finds that geography 
is destiny in terms of diagnostic and treatment practices 
for other areas of medicine (Mulley & Wennberg, 2011); 
that will be even more the case when predicting mental 
health diagnoses. Consider using chart data from New 
York City or Paris (where psychoanalysis remains com-
mon) versus Boston or Seattle, where cognitive behav-
ioral therapy might be the mode. Shifting to focus on 
more basic components of the medical record, such as 
textual analysis of the written notes or mining the other 
medical test results, will also initially stumble over the 
variations in practice—an analyst and a behaviorist will 
record different information. Furthermore, as Meehl (1957) 
noted, when something is not indicated in the chart, it is 
ambiguous whether it was not present in the case or just 
not recorded in the chart; statistical learning as a comput-
erized chart review will be hampered by missing data that 
will not be missing at random. Geographic transportability 
of models is often a bigger challenge than other aspects 
of generalizability (Konig et al., 2007).

Pediatric bipolar disorder was an interesting test case 
because the bulk of the research on the topic was pub-
lished after the current cohort of clinicians had com-
pleted their training (Goldstein et  al., 2017). Other 
diagnoses will create major challenges for different 
reasons: Substance misuse and physical or sexual abuse 
will often be underestimated in clinical records because 
of issues of stigma and concerns about reporting. Con-
duct disorder will often be systematically underdiag-
nosed because third-party payers may not provide 
reimbursement for psychological services when it is 
used as a billing diagnosis. Both stigma and fiscal issues 
will add systematic bias to the billing diagnoses, height-
ening the need for caution if considering using these 
to supervise statistical learning methods.

This is not to say that statistical learning approaches 
should be abandoned. They clearly will be a helpful 
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tool for improving prediction of clinically important 
targets (Bone et al., 2016; Chekroud et al., 2016; Walsh 
et al., 2017), and they can integrate information sources 
that previously were difficult or impossible to use, such 
as using vocal acoustics and verbal content analysis to 
predict suicide attempt (Pestian et al., 2016). But relying 
on chart diagnoses to build the models will lead to 
some fundamental misspecification and challenges in 
generalization, as shown in the abysmal performance 
of the last LASSO model. Similar issues will apply when 
Google mines search history or test publishers mine 
their clouds of user-generated data. These large datasets 
lack a good mental health diagnostic criterion variable, 
and 23AndMe’s efforts to enroll patients with mood 
disorder diagnoses is implicitly using diagnosis as 
usual, not a structured approach (although it will sup-
plement the data with online surveys and cognitive 
tasks). Gathering high-quality SDIs and using well-
established checklists and theoretically guided predic-
tors will accelerate model development by providing 
more valid supervision of the algorithm and higher 
quality input. Alert model builders may find ways to 
add expert review (Brynjolfsson & McAfee, 2014) or 
otherwise refine the information gathered from charts 
(e.g., Walsh et  al., 2017). Conversely, we should be 
cautious about generalizing complex models without 
strong evidence of external cross-validation in settings 
similar to where we are using them. When test publish-
ers mine their cloud-based data and develop scoring 
routines that they then market to clinicians, it will be 
imperative that they gather an external sample with 
high-quality criterion diagnoses and publish the cross-
validation results. It will be tempting to skip that step: 
It is costly (note that most technical manuals rely on 
chart diagnoses for the clinical validity studies, not 
SDIs), and it may not make the product look good. It 
remains an essential step for evaluating the validity of 
the assessment method (Buros, 1965; Konig et al., 2007).

Limitations

Although we covered an ambitious range of models, 
there are many other approaches to classification, and 
there are rapid advances in the area. Interested readers 
can find a good introduction and overview (Baumer 
et al., 2017) or more technical treatments if they want 
to actually apply some of the methods ( James et al., 
2013). We did not consider any of the “black box” 
approaches, such as nearest neighbor, deep neural net-
works, or support vector machines, which do not indi-
cate which variables they are using to make the 
prediction. Though powerful in terms of prediction, 
these are even less helpful in terms of theory building. 
Similarly, we did not evaluate unsupervised methods, 

which use principal components analysis or clustering 
methods to develop ad hoc targets for prediction. These 
will obviously be sensitive to the choice and quality of 
indicators available, and the importance of comparing 
them to high-quality criterion diagnoses seems para-
mount. Because of space constraints and concerns 
about making the article too complicated, we did not 
model missing data. We want to emphasize that in real-
life applications, missing data will be a major consid-
eration, and they are not likely to be missing at random. 
We also only focused on one diagnosis. Clinicians need 
to consider multiple hypotheses; the hypotheses are 
not only competing explanations for symptom clusters 
or presenting problems, but patients frequently have 
comorbidity. Any reasonable complete approach to 
clinical diagnosis and decision support will need to 
handle algorithms for multiple diagnostic targets simul-
taneously and present clinicians with interpretable 
dashboards that summarize the information and guide 
next actions (Few, 2006; Powsner & Tufte, 1994).

Conclusions

Consistent with calls for adopting an evidence-based 
assessment approach (Norcross, Hogan, & Koocher, 
2008; Straus et al., 2011; Youngstrom et al., 2017), any 
of the models investigated improve discrimination accu-
racy over typical clinical practice with regard to bipolar 
disorder. This is not impugning clinicians, but rather it 
indicates that there has been progress in research and 
that some clinically feasible algorithms showed external 
validity and could lead to big gains. Based on present 
results, a Naive Bayesian approach or software using 
relatively simple models with adjustments for calibra-
tion—using a small set of well-established predictors—
currently appear to be the place to concentrate our 
training and upgrade our practices. The first iterations 
of statistical learning need to be treated with caution 
because (a) the differences in referral pattern and 
demography are more substantial than bootstrapping 
or folding can augur during internal cross-validation 
and (b) there are systematic biases in the conveniently 
available data that will distort the criterion variables 
used to supervise the machine learning. This will be 
important to keep in mind as companies with large 
convenience samples build and release scoring tools 
built with statistical learning models.

For the foreseeable future, a blended approach 
seems most productive. Researchers should continue 
to invest in high-quality diagnostic and indicator vari-
ables and pay heed to sampling issues. Clinicians 
should aim to use the best approach available for the 
question at hand, relying on Cochrane reviews and 
meta-analyses to help find the best available tool. 



20	 Youngstrom et al.

Relying on meta-analyses implicitly focuses on methods 
that have been trained and tuned across different set-
tings. Naive Bayes and the probability nomogram 
(Straus et  al., 2011) or simple calculators offer a big 
advance over current practice and may be the best 
option available until scoring applications have been 
rigorously externally cross-validated. The next wave of 
studies should include Naive Bayes using high-quality 
predictors as the incumbent model until a contender 
claims victory in an external dataset. Watson and 
Google will not replace the mental health diagnostician 
quickly, giving us time to figure out the best hybrid in 
our evolving profession (Susskind & Susskind, 2015).
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